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A general  method for  interpreting tempera ture  measurements  obtained by means of the sens-  
ing elements of ca lo r ime te r s  installed in actual s t ruc tures  for  the two-dimensional  plane and 
ax isymmetr ic  cases  for  any time dependence of the thermal  flux is proposed. 

In experiments ,  thermal  fluxes in pipes and actual devices are measured by means of data units whose 
sensing elements are  always in contact of some kind with the s t ruc ture  of the s imulator  or device. The be-  
havior  of tempera ture  as a function of time is obtained as a resul t  of such measurements .  

Consider the following problem: it is neces sa ry  to determine the thermal flux as a function of time on 
the bas is  of the measurements  per formed.  The heat leakage f rom the sensing element to the s t ructure  can 
be so large that calculation of thermal fluxes without considering this leakage is p rac t ica l ly  impossible.  
The est imate of this heat leakage constitutes a complex physical problem. 

Exact theoret ical  solutions of the problem of determining thermal  fluxes in actual s t ruc tures  for an 
a rb i t r a ry  time dependence of the tempera ture  have not yet  been obtained. 

In the present ly  available papers  [2-4], the inverse problem of heat conduction is solved analytically 
on the basis  of relat ionships between the thermal  flux, the temperature ,  the coordinates ,  and the time. 
However, these solutions pertain only to simple cases .  

If the thermophysical  cha rac t e r i s t i c s  depend on the temperature ,  the following method of computer  
solution of the inverse problem of thermal  conduction for a plate is proposed in [3]; using the method of 
s traight  lines, we calculate the tempera ture  distribution along the thickness with respec t  to the surface 
tempera ture  assigned in the experiment,  while the thermal flux is calculated with respec t  to the t empera -  
ture gradient  at the surface.  It has been suggested to use 10-15 equations for  calculating the temperatures ;  
the authors c la im that the thermal  fluxes can then be calculated with an accuracy  of 0.5-1%. However, no 
calculations are given in the paper. 

For actual calorimeters, the problem is not one-dimensional. Calorimeters are complex devices, 
which include many parts with unlike thermophysical characteristics. There is three-dimensional heat 
ovedlow. 

In order to solve this problem most efficiently, we propose to take into account the three-dimensional 
heat overflow and the difference between the thermophysical characteristics of the parts. The proposed 
method is suitable for computer solutions. 

The problem is solved for the case where the temperature is measured at the surface to which the 
thermal flux is supplied. However, solutions can be found also if the temperature is measured at another 
location. 
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Fig. 1. Calculation scheme'and indexing of points. 1) 
m~ layer; 2) par ts  with unlike thermophystcal  cha rac -  
te r i s t ics  (there can be six of them altogether); 3) m 2 
layer;  4) indices of points. 

The following initial data must  be known in order  to solve the problem: 

1) the design of the flat or  ax isymmetr tc  ca lo r ime te r  or, in other words,  the coordinates of contours 
of the ca lo r imete r  parts;  

2) the thermophystcal  cha rac te r i s t i c s  of the parts;  

3) the table of the T = f(r) functions for the point at which the thermal  flux is measured;  

4) the thermal flux conducted f rom within the frame; 

5) the emissivi t ies  of the outside and inside sur faces  of the ca lor imeter .  

The calculat ions are  performed in the following manner:  the thermal  flux is determined so that the 
value of dT/dT determined f rom the thermal conduction equation for  the point where the thermal  flux is 
measured at a given instant of time coincides with the value of dT/dr  for the function T = f(r) given in tab- 
ular  form.  Then, the heating of the ca lo r imete r  and the s t ructural  unit connected to it is calculated with 
respec t  to the determined thermal  fluxes by means of the usual f ini te-difference equations of thermal  con- 
ductton. 

For  the two-dimensional case,  the thermal  conduction equation has the following form [1]: 

OT [ O~T 02T 1 OT ] = a + - - +  . . . . . .  S (1) 
O~ [ Ox ~ Oz 2 x ox J ' 

where 8 = 0 for the plane case,  and S = 1 for  the axisymmetr ie  case.  

For  p rogrammed calculations,  we express  the part ial  derivat ives with respect  to x and z in finite- 
difference form:  

OaT _ Txa- l  - -  2Tx,z + Tx.t+l . OT _ T~, t+l - -  T •  , 
9 

Ox ~ hx  ~ Ox 2hx 
(2) 

O~T Tx- l , t  - -  2Tx.t + T~+l,t 

az ~ hz ~ 

where Ax is the grid spacing along the x axis, and Am is the grid spacing along the z axis. 

The calculation scheme (grid) and the indexing of points are shown in Fig. 1. 

For  the external ca lo r imete r  elements m 1 and m 2 (see Fig. 1), which receive or re lease  convective 
or  radiant thermal  fluxes, the working thermal  conduction equation is given by 

er=[ + •  or 
& [. Ox ~ x Ox 

(T)4 
O~T ] P a ( T z - - i T ) - - e ~  ~ ] + k q r a d  

S + -~-z~ J a + cvAa , (3) 
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Fig. 2. Resu l t s  of ca lcu la t ions  of the t h e r m a l  f luxes 
supplied to the solid. 1) Sensing e lement  (steel); 2) in-  
su la to r  f r a m e  (a = 0.155 �9 10 .7 m2/sec); 3) su r f ace  to 
which the t he rm a l  flux is supplied; 4) insu la to r  (a = 0.155 
.10-7 m2/see).  

whe re  p, i, j, and k a re  coef f ic ien ts ,  which a re  equal to 0 o r  1, depending on the type of the boundary  con-  
di t ions,  and Ah is the th ickness  of the l a y e r  of ex te rna l  e l emen t s .  

The pa r t i a l  de r iva t i ve s  a re  a lso  ca lcu la ted  by  means  of the f i n i t e -d i f f e r ence  equat ions  given above. 
The only d i f f e rence  is that, fo r  the top d e m e n t s  ml, Tn_ l ,  / = T~, l if they are  located on a hor i zon ta l  
s t r a i g h t  line, and T n 1+1 = T n  1 o r  T>t I-1 = T •  l if they a re  located on a v e r t i c a l  s t r a igh t  line, depending 
on the d i r ec t ion  f r o m ' w h i c h  the' t h e r m a l  flux is s'upplied. 

S imi la r  r e l a t ionsh ips  hold fo r  the bo t t om e lemen t s  m 2. It is a s s u m e d  that X(OT/Ox) van i shes  at the 
axis .  

The c u r v e s  along which the t h e r m a l  flux is suppl ied can have any shape.  

The t e m p e r a t u r e  at a ce r t a in  ins tant  of t ime at a given point  is ca lcu la ted  by means  of 

( 0 T )  A~, (4) 
T i + ~ = T ~ +  -0T i 

whe re  A r  is the t ime in te rva l .  

The t h e r m a l  f luxes  a re  ca lcu la ted  when, in the p r o c e s s  of ca lcula t ion ,  the x and z coo rd ina t e s  a re  
equal to the c o o r d i n a t e s  of the point fo r  which the T = f(T) table is ass igned.  The value of d T / d r  is c a l -  
cula ted  with r e s p e c t  to this table :  

dT [OT~ Tj+I--Tj (5) 
I ] d'~ OT- mp Tj+t - -  ~j 

whe re  j pe r t a in s  to the nodal points  at which the T = f(T) g raph  is ass igned;  the symbol  mp denotes  the 
points  of t e m p e r a t u r e  m e a s u r e m e n t .  The t ime for  which the ca lcu la t ions  a r e  p e r f o r m e d  l ies  within rj +1 
and rj .  

The t h e r m a l  flux is then de t e rmined  by means  of the exp re s s ion  

. . . .  02T] } q ,=cvAh !( _ [  + 1 or  s +  a , (6) 
/k&/mp [ Ox ~ x Ox oz ~ J 

i. e . ,  the Laplaeian  p e r t a i n s  to the p r e c e d i n g  ins tant  of t ime.  Since the t ime in te rva l  is v e r y  sho r t  in these  
ca lcu la t ions ,  the e r r o r  in ca lcu la t ing  the t he rma l  f luxes  is smal l ,  as  we shal l  see  la te r .  In o r d e r  to de -  
t e rmine  m o r e  a c c u r a t e l y  the t h e r m a l  f luxes  in so lv ing  the i nve r se  p rob l em,  the au thor  has  in t roduced 
" feedback"  in a d i f fe ren t ly  c o m p o s e d  p r o g r a m .  

The t he rm a l  f luxes  ca lcu la ted  by means  of (6) i n c r e a s e  o r  d e c r e a s e  until the ca lcu la ted  t e m p e r a t u r e  
and the t e m p e r a t u r e  a s s igned  at a given point  co inc ide  with the a s s igned  t e m p e r a t u r e .  However ,  this p r o -  
longs the ca lcula t ion  t ime.  
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Fig. 3. Thermal  flux q (W/m 2) calculated with and without an allow- 
ance for  the heat leakage as a function of the time T (sec). 1) Com- 
puter interpretat ion of the thermal [Lux; 2) calculation of the ther -  
mal flux with respect  to the heating rate  of the data uni t ' s  sensing 
element without an allowance for leakage: q = c~/5(dT/dT). 

Fig. 4. Assigned and calculated functions at the point where the 
thermal flux is measured.  The solid T = f(T) curve pertains to 
measurement  at the surface (the curve in tabular form is fed into 
the computer).  The dashed T = f(T) is obtained by calculation f rom 
the solution of the thermal  conduction equation with respec t  to the 
thermal  fluxes computed according to the p rogram,  T is the t em-  
pera ture  (degK); T is the time (sec). 

As an example of computer  calculations, we provide the resul ts  obtained in calculating the thermal  
fluxes supplied to the solid shown in Fig. 2. The thermal fluxes calculated with an allowance for heat leak- 
ages (according to the program) and without taking into account the leakages are shown in Fig. 3. Figure 
4 shows the assigned and the theoret ical  functions for the point at which the thermal  flux is measured.  
They are in good mutual agreement.  

The usual procedure  is used in calculating theheating by means of the f ini te-difference method, and, 
therefore,  the calculations of the thermal  fluxes are undoubtedly cor rec t .  

It should be noted that no oscillation or  nonconvergence of the solution was observed in any of the 
cases  (of course,  the value of AT was smal le r  than the well-known theoret ical  rat ios  Ax2/2a and Ay2/2a 
in the entire field of calculations; otherwise, oscillation would have occurred) .  

In conclusion, it should be mentioned that these resul ts  are of great  importance for thermal flux 
measu remen t s  in tests  and, consequently, in designing actual devices. 

T 
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is the temperature;  
are the coordinates;  
is the thermal  flux; 
ts the heat t ransfer  coefficient; 
LS the r ecove ry  temperature;  
ts the time; 
ts the specific heat; 
LS the specific weight; 
Ls the thermal  conductivity; 
ts the thermal  diffusivity; 
~s the emissivi ty.  

NOTATION 
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